
Magnetic properties of a S  =  1/2 zigzag spin chain compound (N2H5)CuCl3

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 3607

(http://iopscience.iop.org/0953-8984/15/21/309)

Download details:

IP Address: 171.66.16.119

The article was downloaded on 19/05/2010 at 09:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/21
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) 3607–3618 PII: S0953-8984(03)59521-2

Magnetic properties of a S = 1/2 zigzag spin chain
compound (N2H5)CuCl3

N Maeshima1,5, M Hagiwara2, Y Narumi3, K Kindo3, T C Kobayashi3

and K Okunishi4

1 Faculty of Engineering, Osaka Electro-Communication University, Neyagawa,
Osaka 572-8530, Japan
2 RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
3 KYOKUGEN, Osaka University, Toyonaka, Osaka 560-8531, Japan
4 Department of Physics, Faculty of Science, Niigata University, Niigata 950-2181, Japan

Received 8 February 2003, in final form 22 April 2003
Published 19 May 2003
Online at stacks.iop.org/JPhysCM/15/3607

Abstract
We present a theoretical and experimental study of a quasi-one-dimensional
zigzag antiferromagnet (N2H5)CuCl3, which can be viewed as weakly coupled
Heisenberg chains with a frustrated interaction. We first discuss generic features
of the magnetic properties of the zigzag spin chain between the nearly single
chain case and the nearly double chain case,on the basis of the finite temperature
density-matrix renormalization group (DMRG) calculations. We next show
the experimental results for the magnetic susceptibility and the high-field
magnetization of a single crystal of (N2H5)CuCl3 above the Néel temperature
TN = 1.55 K. By comparing the experimental data with the DMRG results
carefully, we finally obtain the ratio of the nearest and next-nearest exchange
couplings as J1/J2 = 0.25 with J2/kB = 16.3 K. We also investigate the three-
dimensional (3D) coupling J ′ effect by using mean-field theory combined with
the DMRG calculations. The estimated value J ′ ∼ 0.04J2 supports the one-
dimensionality of (N2H5)CuCl3 above TN.

1. Introduction

Frustration effects in low-dimensional antiferromagnetic (AF) quantum spin systems have
attracted much attention because of their peculiar behaviour in low-energy physics. The
quantum effect and the geometrical frustration cooperatively induce a strong fluctuation, which
often gives rise to various non-magnetic ground states and quantum phase transitions [1–5].
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Figure 1. The zigzag spin chain. The dashed lines and solid lines denote the nearest neighbour
coupling J1 and the next-nearest neighbour coupling J2 respectively.

A typical example of such frustrated low-dimensional magnets is the S = 1/2 AF zigzag
chain (see figure 1). The Hamiltonian of the zigzag spin chain is given by

H =
∑

i

[J1 �Si · �Si+1 + J2 �Si · �Si+2] − gµB H
∑

i

Sz
i , (1)

where �S is the S = 1/2 spin operator, g is the Landé g factor and µB is the Bohr magneton.
J1 and J2 denote the nearest neighbour and the next-nearest neighbour coupling constants
respectively, and H is the applied magnetic field. Intensive theoretical studies have shown
that the zigzag chain has a rich phase structure at zero magnetic field. When J2 = 0,
the system is equivalent to the Heisenberg chain having gapless excitation [6]. Increasing
J2, a quantum phase transition from the critical spin liquid phase to the gapped dimer
phase [2, 7] occurs at J2/J1 = 0.2411 [8]. This gapped dimer phase is expected to extend up
to the limit J2/J1 = ∞ [9], which corresponds to the two decoupled Heisenberg chains.
Here, it should be remarked that the dimer gap � for J1 � J2 is exponentially small:
� ∼ exp(−constant × J2/J1) [9].

The theoretical studies mentioned above have stimulated experimental studies of
the zigzag spin chain. In fact, the magnetic properties of SrCuO2 [10] and Cu[2-(2-
aminomethyl)pyridine] [11] were investigated recently. For the latter case, the nearly gapless
behaviour of the magnetic susceptibility was observed for a powder sample, and then the
ratio of the couplings of Cu[2-(2-aminomethyl)pyridine] is estimated as J2/J1 ∼ 0.2 [11].
In this paper, we focus on another type of the zigzag compound (N2H5)CuCl3 [12], which
is interestingly expected to have the coupling constant J1 � J2 [13]. Since (N2H5)CuCl3
can be synthesized as a single crystal, we can precisely compare its magnetic properties with
numerical calculations.

An important point on the compound is that its magnetic property is very similar to the
one in the single Heisenberg chain limit, although it has the double chain structure. Thus how
we can distinguish the magnetic behaviour of the zigzag chains between J1 � J2 and J1 � J2

is an important problem from both theoretical and experimental views. In what follows, we
study the magnetic properties of a single crystal sample of (N2H5)CuCl3, on the basis of the
precise comparison between the numerical results obtained by the finite temperature density-
matrix renormalization group (DMRG) method [14, 15] and the experimental measurements
of the magnetic susceptibility and the high-field magnetization. In addition, we remark the
effect of the three-dimensional (3D) coupling6 (J ′) on (N2H5)CuCl3; we apply the mean-
field theory combined with the finite temperature DMRG to verify the one-dimensionality of
(N2H5)CuCl3 [16, 17].

In section 2, we describe the finite temperature DMRG method and the fundamental
aspects of the single crystal of (N2H5)CuCl3. In section 3, we show the DMRG results for the
6 The 3D coupling noted here is usually called ‘inter-chain coupling’. However this naming can be confused with
‘inter-chain coupling’ originating from the double chain structure of the zigzag interaction. In this paper, we thus call
the 3D inter-chain coupling ‘3D coupling’.
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susceptibility and the magnetization curve, and discuss generic features of them. In section 4
we show the experimental data of the magnetic susceptibility and the high-field magnetization
parallel to the chain direction. Then the exchange coupling J2/kB = 16.3 K and the ratio
J1/J2 = 0.25 are obtained by the precise comparison of the experimental data with the DMRG
results. We also discuss the 3D effect and estimate the coupling J ′ ∼ 0.04J2. In section 5 we
summarize our conclusions.

2. Computational and experimental details

2.1. Finite temperature DMRG

For the reliable analysis of the experimental results, systematic numerical data of the
magnetization curve and the susceptibility are required in a wide parameter region. However,
the quantitative calculation for the zigzag chain at finite temperatures has not been made yet,
especially for the nearly two chain case. In this study we employ the finite temperature DMRG
method [14, 15], which is free from the negative sign problem and thus enables us to calculate
the quantities at sufficiently low temperatures with high accuracy. We note that the method
has actually been applied successfully to some frustrated spin ladder systems [16, 18–20].
Following the implementation procedure described in [19], we calculate the magnetization
and the susceptibility with the maximum number of retained bases m = 240. The lowest
temperature we can reach is kBT/J = 0.07, where J is the larger of the two exchange
couplings J1 and J2. We have confirmed that the computed data converge with respect to m
and the Trotter number.

2.2. Experiment

We next summarize the synthesis and the crystal structure of (N2H5)CuCl3. (N2H5)CuCl3
samples were synthesized according to the method described in [12]. After several syntheses,
we obtained small single crystal samples with a typical size of 1.5 × 2 × 3 mm3. Chemical
analysis shows good agreement between the observed and calculated ratios of the elements.
This compound crystallizes in the orthorhombicsystem (space group: Pnma) [12]. The lattice
constants at room temperature are a = 14.439(2) Å, b = 5.705(1)Å and c = 6.859(1) Å. The
chain structure of this compound is shown in figure 2. This compound has a ladder structure
in which Cu and Cl align alternately along the leg, forming a copper zigzag chain. Copper
3d hole orbitals (3dx2−y2 ) are situated perpendicularly to the leg, resulting in small exchange
interactions along the leg.

Magnetic susceptibilities were measured with a SQUID magnetometer (Quantum Design’s
MPMS-XL7) installed at KYOKUGEN in Osaka University. As well as high-field
magnetization measurements up to 30 T carried out with a pulse magnet, X-band ESR (Varian
E109 spectrometer) and specific heat measurements were also performed at KYOKUGEN.

3. DMRG results

In this section, we present the DMRG results for the susceptibility and the magnetization curve,
and then discuss the frustration dependence of such quantities for the nearly single chain and
nearly decoupled chains cases.

Figure 3 shows the normalized susceptibilities χ∗ ≡ χ/χmax, where χ is the magnetic
susceptibility per site and χmax is its maximum value. The normalized temperature T ∗ ≡
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dx2–y2

a

b

c

Figure 2. Chain structure of (N2H5)CuCl3.

Table 1. The values of Tmax and χmax extracted from the DMRG results with the normalization
J1 = 1 for J1 > J2 and J2 = 1 for J1 < J2. We also set kB = gµB = 1 for simplicity.

J1 > J2 J1 < J2

J2/J1 Tmax χmax J1/J2 Tmax χmax

0.0 0.640 0.147 0.0 0.640 0.147
0.1 0.588 0.147 0.1 0.640 0.143
0.2 0.516 0.148 0.2 0.635 0.139
0.3 0.419 0.149 0.3 0.630 0.135
0.4 0.299 0.152 0.4 0.620 0.131
0.5 0.279 0.153 0.5 0.606 0.128

T/Tmax is also introduced, where Tmax is defined as the temperature at which χ indicates χmax.
The values of Tmax and χmax are summarized in table 1.

Let us first consider the nearly single chain case (J1 > J2). In figure 3(a), we can see
the feature of the gapless Heisenberg chain for J2/J1 � 0.3; in a high temperature region χ∗
increases with decreasing T ∗, and takes a round peak at T ∗ = 1. Then χ∗ starts to decrease,
and finally converges to a finite value as T ∗ → 0. Although the spin fluid-dimer transition
occurs at J2/J1 = 0.2411, the expected dimer gap is exponentially small for J2/J1 = 0.3 [8],
where the almost gapless behaviour of χ∗ appears [19]. As J2/J1 is increased to 0.4 and 0.5,
the dimer-gapped phase starts to develop rapidly, and then the exponential decay of χ∗ appears
explicitly in the low temperature region. This rapid growth of the dimer gap also causes the
considerable enhancement of χ∗ in the high temperature side (T∗ > 1) for J2/J1 = 0.4 and 0.5.

We next consider the nearly decoupled chains case (J1 < J2), where we can also see
that χ∗ basically shows the feature of the gapless chain. A remarkable point, in contrast
to the nearly single chain case, is that the gapless-like behaviour is observed in a wide
range of J1/J2 (see figure 3(b)) and thus the dependence of χ∗ on J1/J2 is relatively
weak. This wide-range gapless-like behaviour is attributed to the extremely small spin gap,
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Figure 3. Finite temperature DMRG results of the susceptibility (a) for J1 > J2 and (b) for
J1 < J2.

� ∼ exp(−constant× J2/J1), although the system is considered to be the dimer-gapped phase
for J1 
= 0. For example, the spin gap is estimated as 0.03J2 even at J1/J2 = 0.5 [9], and thus
the effect of the gap is easily smeared out by the finite temperature effect.

Here, we wish to point out an important feature of the susceptibility when analysing the
experimental results. If the frustration is small, it may be difficult to discriminate between
the behaviour of the nearly single chain and that of the nearly decoupled chains only from the
susceptibility result, because χ∗ of the nearly single chain and that of the nearly decoupled
chains are very similar to each other. However, an important point is that the frustration
dependence of Tmax for J1 > J2 is relatively sensitive to J2/J1 (see table 1), implying that the
energy scale of the dominant coupling constants is different between J1 > J2 and J1 < J2,
even if the shapes of the susceptibility are quite similar to each other. For example, the shape
of χ∗ for J2/J1 = 0.1 is almost coincident with that for J1/J2 = 0.3, but the values of Tmax

for J2/J1 = 0.1 and J1/J2 = 0.3 are 0.588 and 0.630 respectively, which show about 7%
deviation.

We now proceed to the results of the magnetization curves. Figure 4 shows the
magnetization curves both for J1 > J2 and for J1 < J2 at kBT/J1 (J2) = 0.125, which
can be directly compared with experimental results of (N2H5)CuCl3 measured at 2 K as
shown later. In the figure, we can basically see the characteristic property in the gapless
Heisenberg chain as well; after the linear behaviour with H is observed near the zero magnetic
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Figure 4. The magnetization curves obtained with the DMRG (a) for J1 > J2 at kBT/J1 = 0.125
and (b) for J1 < J2 at kBT/J2 = 0.125.

field (H = 0), the magnetization M increases rapidly in the high-field region, and finally
saturates near gµB H/J1(J2) ∼ 2.5. However, what we want to remark here is that quantitative
differences appear in the magnetization curve. For instance, in figure 4(a), we can see that
the growth of the dimer gap for J2/J1 � 0.4 causes the enhancement of the magnetization
in the middle-field region (gµB H/J1 � 1), which is consistent with the susceptibility result.
Moreover the magnetization curve around the saturation field Hs is shifting to the high-field
side systematically as the frustration increases.

In order to capture the feature of the magnetization curves in each region of J1 > J2 and
J1 < J2, we focus here on the above mentioned systematic shift of the magnetization curve
near the saturation field Hs . For the zigzag chain, the behaviour of the saturation field Hs is
easily obtained as

Hs =




2J1

gµB
for J2/J1 < 1/4

1

gµB

(
J1 + 2J2 +

J 2
1

8J2

)
for J2/J1 > 1/4.

(2)

For the nearly single chain, the saturation field Hs stays at 2J1/gµB for J2/J1 < 1/4, and
it starts to increase gradually as J2/J1 increases beyond 1/4. On the other hand, for the
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( (

Figure 5. The angular dependence of the g-value of (N2H5)CuCl3.

nearly decoupled chains, Hs starts to increase linearly as soon as the inter-chain coupling
is introduced. This dependence of Hs readily appears in the magnetization curve shown in
figure 4; the magnetization curves near Hs for J2/J1 < 0.3 remain in the ‘vicinity’ of the pure
Heisenberg one. In contrast, for the nearly double chain, we can see that the curves near Hs

shift to the high-field side linearly with respect to J1/J2. As a result, the magnetization curves
near Hs for J1 > J2 become slightly steeper than those for J1 < J2.

As was seen for the susceptibility result, the dominant coupling determined from the
susceptibility exhibits a slightly different value depending on the nearly single chain or
nearly decoupled chains cases. Then such difference of the dominant coupling affects the
magnetization curve near the saturation field, which can be resolvable with the comparison
between the accurate DMRG result and the experimental ones. Therefore the coupling
constant of the zigzag chain can be expected to be determined with the cooperative use of
the susceptibility and the magnetization curve.

4. Experimental results

4.1. ESR and specific heat

We performed X-band ESR measurements at room temperature on a single crystal sample
of (N2H5)CuCl3 in order to get the g-values precisely. Accurate comparison between the
experimental data and the numerically calculated ones requires precise g-values. Figure 5
shows the angular dependence of the g-value. We obtained g-values of 2.285 and 2.060 for the
external magnetic field parallel and perpendicular to the chain, respectively. In the following
comparisons between experiments and calculations, we used these g-values.

We carried out specific heat measurements on a powder sample of (N2H5)CuCl3. Figure 6
shows the temperature dependence of the specific heat divided by temperature. Here, the data
include the lattice contribution. We observed an anomaly at 1.55 K (TN) which is probably due
to the AF long-range ordering. In order to avoid the 3D effect in this quasi-one-dimensional
system, high-field magnetization experiments were done at 2 K above TN.
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Figure 6. The specific heat of a powder sample of (N2H5)CuCl3.

4.2. Magnetic susceptibility

Magnetic susceptibility χEXP of the single crystal of (N2H5)CuCl3 parallel to the chain, which
was used for the ESR measurement, is presented in figure 7, where the DMRG results χDMRG

are also shown for comparison. In the high temperature region the χEXP exhibits the Curie–
Weiss-type T -dependence, and has a round peak around T = 10 K. When the temperature
is decreased further, χEXP also decreases and finally converges to a finite value in the zero
temperature limit. Since these features are characteristic in gapless 1D antiferromagnets, we
should take account of the two possibilities of gapless zigzag chains, as mentioned in the
introduction. We thus analyse χEXP with the DMRG results both for the single chain limit
(J1 > J2) and the weakly coupled Heisenberg chain limit (J1 < J2). We first estimate the
dominant exchange coupling constant from the position of the broad peak, by using g = 2.285
obtained from the ESR, and then tune another exchange coupling constant so as to reproduce
the shape of the susceptibility well.

For the former case (J1 > J2), we find that χDMRG of J2/J1 = 0.1 with J1/kB = 17.4 K
agrees well with χEXP in the whole temperature region (see figure 7(a)). For the latter (J1 < J2),
we can also see that the DMRG results for 0.2 < J1/J2 < 0.3 well reproduce the shape of
the experimental susceptibility, as in figure 7(b), where the best fitted value is obtained as
J1/J2 = 0.25 with J2/kB = 16.3 K. Since the DMRG results seem to explain the whole
shape of the susceptibility well for both cases, it is unfortunately difficult to confirm which
case is realized in (N2H5)CuCl3 only from the susceptibility result, as discussed in the previous
section. However, we note that the dominant coupling J1/kB = 17.4 K for J1 > J2 is about
6% bigger than J2/kB = 16.3 K for J1 < J2, which is consistent with the DMRG result. For
the case of the H⊥ chain, very similar results were obtained using the same parameter values
of the exchange couplings as for the H ‖ chain and g = 2.060 from ESR.

Before proceeding to the next subsection, we make a comment about a possibility of
the weak ferromagnetic coupling. We have also computed the case of a negative J2(J1)

for J1 > J2 (J1 < J2). However, the shape of the susceptibility is changed drastically by
introducing the ferromagnetic coupling, so that the couplings of (N2H5)CuCl3 are AF.
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Figure 7. Magnetic susceptibility of (N2H5)CuCl3 compared with the DMRG results (a) for
J1 > J2 and (b) for J1 < J2. The open circles denote experimental data χEXP and the curves show
finite temperature DMRG results χDMRG.

4.3. Magnetization curve

Figure 8 shows the magnetization curve for the single crystal of (N2H5)CuCl3 along the chain
at T = 2.0 K up to 30 T. The temperature was set a little above TN (1.55 K) as already
mentioned. Around the saturation field, there is a small hysteresis of magnetization between
the ascending and descending processes, due to the magnetocaloric effect. In the figure,
we can see that the measured curve of (N2H5)CuCl3 is qualitatively similar to the gapless
chain, which is consistent with the susceptibility results. Using the parameters estimated in
the previous subsection, we now discuss the magnetization processes of the DMRG and the
experiments. The temperature used in the numerical calculations was determined close to that
in the experiments.

The results of comparisons are also shown in figure 8, where the DMRG curves both for
J1 > J2 and for J1 < J2 are in good agreement with the experimental one in the low-field
region. However, the magnetization curve in the high-field region is reproduced well by the
coupling of J1/J2 = 0.25, as can be seen in figure 8(b). Indeed the gradient of the calculated
curve for J1 > J2 is slightly bigger than the experimental one around 15 < H < 25 T, while
the curve for J1 < J2 is well fitted for the whole range of the magnetic field. The difference
between two cases described in the previous section certainly appears in high-field region.
Hence we have determined that the zigzag chain compound (N2H5)CuCl3 is a weakly coupled
double chain system with the parameters J1/J2 = 0.25 and J2/kB = 16.3 K.
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Figure 8. The magnetization curves of (N2H5)CuCl3. The comparison with the DMRG results
(a) for J2/J1 = 0.1 and (b) for J1/J2 = 0.25.

4.4. 3D interaction

In this subsection, we would like to discuss the effect of the 3D interaction on (N2H5)CuCl3.
Since the specific heat shows the 3D ordering at TN = 1.55 K, some consideration for the 3D
coupling may be required. To this end, we employ here the mean-field theory combined with
the DMRG method [16, 17]. We use the obtained values of the couplings J1/J2 = 0.25 and
J2/kB = 16.3 K, and assume a 3D Heisenberg-type interaction whose coupling constant is
denoted as J ′. According to the strong leg interaction J2, we assume a staggered magnetic
field along the leg direction, and then determine the assumed magnetic field and the DMRG-
calculated magnetic order self-consistently. In particular, the phase transition point within the
mean-field theory is given by

χs(TN) = 1

z J ′ (3)

where χs(T ) is the staggered susceptibility and z is the coordination number. Calculating
χs with the finite temperature DMRG method, we can estimate J ′ from the experimentally
determined Néel temperature TN through the equation (3). In figure 9, we plot the normalized
staggered susceptibility χ∗

s ≡ J2χs obtained with finite temperature DMRG. In the figure,
we find that the crossing point of χ∗

s and the experimentally obtained Néel temperature is
given by χ∗

s = 6.6 and T ∗
N ≡ kBTN/J2 ∼ 0.095, where T ∗

N is the normalized transition
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Figure 9. Staggered susceptibility of the zigzag chain for J1/J2 = 0.25. The dotted line denotes
the normalized transition temperature T ∗

N ≡ kBTN/J2 ∼ 0.095 for (N2H5)CuCl3. The value of χ∗
s

at kBT/J2 = T ∗
N gives the coupling z J ′ following equation (3).

temperature. Assuming z = 4, we obtain J ′ ∼ 0.04J2 (∼ 0.6 K), which is about 0.2J1. Thus
we can conclude that the 3D interaction effect is much smaller than the intra-chain couplings.
Therefore the zigzag chain picture is valid for (N2H5)CuCl3 above the Néel temperature.

5. Summary and discussion

We have investigated the magnetic properties of (N2H5)CuCl3, which can be regarded as
a zigzag chain with the coupling J1 < J2, by the accurate comparison of the numerical
calculations and experiment results.

First, we have calculated the susceptibility and the magnetization curves of the zigzag
chain using the finite temperature DMRG method for the nearly single chain case J1 > J2

and for the nearly double chain case J1 < J2 to clarify the differences between the two cases
appearing in the parameter dependence of the physical quantities. From the experimental point
of view, the quantitative difference appearing in the high-field region of the magnetization curve
is found to help us to identify the magnetic nature of (N2H5)CuCl3.

We have next presented the experimental results for a single crystal of (N2H5)CuCl3.
The g-values parallel and perpendicular to the chain are determined by the ESR experiment as
g = 2.285 and 2.060, respectively. The Néel temperature is also estimated as TN = 1.55 K from
the specific heat of a powder sample. Above the Néel temperature, the observed susceptibility
and the magnetization for the single crystal show gapless or nearly gapless behaviour. An
accurate comparison of the experimental data with the DMRG results shows that the DMRG
results for J1/J2 = 0.25 with J2/kB = 16.3 K reproduce the experimental results well. The
estimated couplings also show that the dimer gap of (N2H5)CuCl3 is 0.001J2 ∼ 0.02 K [9],
which is much smaller than TN. Hence the gapless behaviour of (N2H5)CuCl3 observed above
TN is consistent with the obtained exchange couplings.

Finally, we have discussed the effect of the 3D interaction, using the mean-field theory
combined with the finite temperature DMRG method. The estimated value of the 3D coupling
J ′ (∼0.04J2) is sufficiently small compared with the intra-chain couplings, which supports
the zigzag chain picture of the compound.

In the present paper, we have addressed the zigzag compound of (N2H5)CuCl3 in terms
of the bulk quantities: the magnetic susceptibility and the high-field magnetization, for
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which rather precise analyses are required. However, the frustration effect often gives rise
to incommensurate behaviour in the correlation function [9, 21], which is difficult to capture
in the bulk quantities. Thus it is also an interesting problem to investigate the compound by
measurements of the fluctuation-associated quantities with position resolvable methods, such
as NMR or the inelastic neutron scattering.
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